Strong Geodetic Number of Complete Bipartite Graphs, Crown Graphs and Hypercubes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

META-HEURISTIC ALGORITHMS FOR MINIMIZING THE NUMBER OF CROSSING OF COMPLETE GRAPHS AND COMPLETE BIPARTITE GRAPHS

The minimum crossing number problem is among the oldest and most fundamental problems arising in the area of automatic graph drawing. In this paper, eight population-based meta-heuristic algorithms are utilized to tackle the minimum crossing number problem for two special types of graphs, namely complete graphs and complete bipartite graphs. A 2-page book drawing representation is employed for ...

متن کامل

Matching graphs of Hypercubes and Complete Bipartite Graphs

Kreweras’ conjecture [1] asserts that every perfect matching of the hypercube Qd can be extended to a Hamiltonian cycle. We [2] proved this conjecture but here we present a simplified proof. The matching graph M(G) of a graph G has a vertex set of all perfect matchings of G, with two vertices being adjacent whenever the union of the corresponding perfect matchings forms a Hamiltonian cycle. We ...

متن کامل

The geodetic number of strong product graphs

For two vertices u and v of a connected graph G, the set IG[u, v] consists of all those vertices lying on u − v geodesics in G. Given a set S of vertices of G, the union of all sets IG[u, v] for u, v ∈ S is denoted by IG[S]. A set S ⊆ V (G) is a geodetic set if IG[S] = V (G) and the minimum cardinality of a geodetic set is its geodetic number g(G) of G. Bounds for the geodetic number of strong ...

متن کامل

Routing Numbers of Cycles, Complete Bipartite Graphs, and Hypercubes

The routing number rt(G) of a connected graph G is the minimum integer r so that every permutation of vertices can be routed in r steps by swapping the ends of disjoint edges. In this paper, we study the routing numbers of cycles, complete bipartite graphs, and hypercubes. We prove that rt(Cn) = n − 1 (for n ≥ 3) and for s ≥ t, rt(Ks,t) = 3s 2t + O(1). We also prove n + 1 ≤ rt(Qn) ≤ 2n − 2 for ...

متن کامل

Cyclic type factorizations of complete bipartite graphs into hypercubes

So far, the smallest complete bipartite graph which was known to have a cyclic type decomposition into cubes Qd of a given dimension d was Kd2d−2,d2d−2. Using binary Hamming codes we prove in this paper that there exists a cyclic type factorization of K2d−1,2d−1 into Qd if and only if d is a power of 2.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Malaysian Mathematical Sciences Society

سال: 2019

ISSN: 0126-6705,2180-4206

DOI: 10.1007/s40840-019-00833-6